King Fahd University of Petroleum & Minerals
College of Computer Science and Engineering
Information and Computer Science Department
ICS 202 – Data Structures
Lab 06: Binary Trees
Objectives
The objective of this lab is to design, implement and use binary trees.

Outcomes
After completing this Lab, students are expected to:
•	Understand classes for binary trees.
•	Implement methods for binary trees.
•	Traverse binary trees (breadth-first, depth-first)
•	Insert into and delete from binary trees.

BinaryTree insertion and deletion
There are no fixed rules for inserting and deleting from a Binary-tree. In our Binary-tree implementation, we use the insertion and deletion algorithms given below:
· Given a binary tree and a key, insert the key into the binary tree at the first position available in level order traversal.

[image:]

Note: We can create a Binary tree without using the insert method. We do this by creating the root node and then linking it with other nodes:
 BinaryTree<Integer> tree = new BinaryTree<Integer>();
 	tree.root= new BTNode(7);
 tree.root.left= new BTNode(40);
 tree.root.left.right = new BTNode(28);

 [image:]

· Given a binary tree, delete a node from it by making sure that tree shrinks from the bottom (i.e. the deleted node is replaced by the last leaf node).

 [image:]
Level of a Binary tree Node

 The Level (or depth) of a node v: The length of the path from the root to v (i.e., the number of edges from the root to v).

 [image:]

Note:
For the purpose of this lab you are allowed to use the given BinaryTree, BTNode, and BinaryTreeDriver classes only.

Lab Exercises
1. Write a method public int count() to count the number of nodes in a binary tree.

2. Write a method public boolean isLeaf(BTNode node) to determine if a given binary tree node is a leaf.

3. Write a method public int countLeaves() to count the number of leaves in a binary tree.

4. Write a method int getLevel(T data) to find the level of a node with key data of a binary tree. Assume that the binary tree has distinct keys.

Test program.
Write a test program that creates the binary tree shown below, traverses it using the breadth-first and depth-first traversals (preorder, inorder, and postorder) and prints the traversal results. It also tests the delete method and the above methods. For example, for the following tree:
 [image:]

 a sample program run is:

 The number of nodes in the tree is 6
MMThe number of leaf nodes in the tree is 3
MMThe level of node with key 4 is 2
MMTrying to find the level of node with key 60 ...
MMjava.util.NoSuchElementException: Key not in tree.
MM
 Preorder Traversal is:
MM1 2 4 5 12 3

MMInorder Traversal is:
MM4 2 12 5 1 3

MMBefore deleting key 3, level order traversal of binary tree is:
MM1 2 3 4 5 12
MMThe tree is:
MM R----1
MMM L----2
MM M | L----4
MM M | R----5
MM M | L----12
MM M R----3
MM
MMAfter deleting key 3, level order traversal of binary tree is:
MM1 2 12 4 5
MMThe tree is:
MM MR----1
MM M L----2
MM M | L----4
MM M | R----5
MM M R----12
MMM

Page 2 of 2
	
image4.png
Level 0

(®)
® (© Level 1

@ @e @<7Level2
("D/ @ o Level 3

@7 Level 4

image5.png

image1.png
s & @ @0 &

image2.png
#

image3.png
(o) (o), Delete last leaf node
- - 5
© () O ()
© OOOO ©®OO

Node to be deleted is 12 Replace 12 by last leaf node value

